Fife Peak Quadrangle, Cochise County, Arizona— Analytic Data and Geologic Sample Catalog ## U.S. GEOLOGICAL SURVEY BULLETIN 2021-A ### Chapter A ## Fife Peak Quadrangle, Cochise County, Arizona— Analytic Data and Geologic Sample Catalog By EDWARD A. DU BRAY, DOUGLAS B. YAGER, and JOHN S. PALLISTER Geochemical data for and availability of samples collected during geologic mapping of the quadrangle U.S. GEOLOGICAL SURVEY BULLETIN 2021 GEOLOGIC SAMPLING OF THE CHIRICAHUA MOUNTAINS, ARIZONA ## U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U. S. Government #### **UNITED STATES GOVERNMENT PRINTING OFFICE: 1992** For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 #### Library of Congress Cataloging-in-Publication Data du Bray, E. A. Fife Peak quadrangle, Cochise County, Arizona: analytic data and geologic sample catalog / by Edward A. du Bray, Douglas B. Yager, and John S. Pallister. p. cm.—(Geologic sampling of the Chiricahua Mountains, Arizona ; Chapter A) (U.S. Geological Survey bulletin ; 2021) "Geochemical data for and availability of samples collected during geologic mapping of the quadrangle." "B2021A." Includes bibliographical references. Supt. of Docs. no.: I 19.3:2021A 1. Rocks—Arizona—Cochise County—Analysis. 2. Geology—Arizona—Cochise County. 3. Geological mapping—Arizona—Cochise County. 1. Yager, Douglas B. II. Pallister, John S. III. Title. IV. Series. V. Series: U.S. Geological Survey bulletin; 2021. QE75.B9 no. 2021a [QE445.A594] 557.3 s--dc20 [557.91′53] 92-13659 ### **CONTENTS** Abstract A1 Introduction A1 General geology A1 Analytic data A2 References cited A4 #### **PLATE** #### [Plate is in pocket] 1. Map showing sample localities and sites of geologic observations in the Fife Peak quadrangle #### **FIGURE** Maps showing location of the Fife Peak quadrangle and important geographic and geologic features in the Chiricahua Mountains area A2 #### **TABLES** - 1. Status and treatment of samples collected in the Fife Peak quadrangle A5 - 2-6. Analyses of selected samples collected in the Fife Peak quadrangle: - 2. Major oxides A9 - 3. Trace elements A11 - 4. Instrumental neutron activation data A14 - 5. Abundances of FeO, CO₂, F, and Cl A15 - 6. Abundances of Be, Cr, Ni, Pb, Sn, and Ag A15 # Fife Peak Quadrangle, Cochise County, Arizona—Analytic Data and Geologic Sample Catalog By Edward A. du Bray, Douglas B. Yager, and John S. Pallister #### **Abstract** More than 115 rock samples were collected during geologic mapping of the Fife Peak 71/2-minute quadrangle in southeastern Arizona. Trace-element abundances were determined in most of these samples by energy-dispersive spectroscopy. Major-oxide abundances were determined for 81 samples, and instrumental neutron activation analyses were obtained for 46 samples. Miscellaneous wet chemical determinations (CO2, FeO, F, and CI) were also made for a small number of samples. Abundances of Be, Cr, Ni, Pb, Sn, and Ag were determined in two samples. Standard, and in some cases, polished thin sections were prepared for about half of the samples. All of these resources aided map unit characterization. The availability of chemical data, thin sections, and hand specimens for each of the samples collected in the quadrangle is tabulated in this report. The information presented in this report supplements the geologic map of the Fife Peak quadrangle (U.S. Geological Survey Quadrangle Map GQ-1708) and supports ongoing investigations of the evolution of the Turkey Creek caldera. #### INTRODUCTION The Fife Peak 7½-minute quadrangle is east-southeast of Tucson, Ariz., in the Chiricahua Mountains (fig. 1). The quadrangle is just southwest of Chiricahua National Monument and about 60 km (40 mi) southeast of Willcox, Ariz. The Fife Peak quadrangle includes a part of the Chiricahua Mountains, a range characterized by unusual ecologic diversity that ranges from Sonoran desert through subalpine environments. Altitudes within the quadrangle range from about 1,460 m (4,800 ft) on the pediment surface west of the Chiricahua Mountains to 2,040 m (6,700 ft) in the rugged area along the east edge of the quadrangle. The only paved road in the quadrangle (Arizona Highway 181) passes along the western base of the Chiricahua Mountains and traverses the length of the quadrangle near its west edge; several unpaved roads and a well-developed trail system provide reasonably good access to most of the area. This report supplements the geologic map of the Fife Peak quadrangle (Pallister and du Bray, in press). It lists availability of chemical data, thin sections, and hand specimens for each of the samples collected in the quadrangle (table 1) and provides tabulations of chemical data (tables 2–6) for samples of Tertiary volcanic rocks that were collected during geologic mapping of the quadrangle. The mapping and data collection are both part of a continuing volcanologic study of the Chiricahua Mountains in general and of the Turkey Creek caldera in particular. The geology of the area has been summarized by Pallister and du Bray (1989 and in press) and by Pallister and others (1990). The data presented here are the subject of a study concerning evolution of the Turkey Creek caldera (du Bray and Pallister, 1991) and ongoing topical studies. #### **GENERAL GEOLOGY** Erosion and basin-range faulting in the Chiricahua Mountains have exposed multiple levels through the 27-Ma (Pallister and du Bray, 1989) Turkey Creek caldera. Parts of the 20-km-diameter caldera underlie most of the Fife Peak quadrangle. Components of the caldera exposed in the quadrangle include, from oldest to youngest, intracaldera and outflow facies of the Oligocene Rhyolite Canyon Tuff; dacite porphyry, which forms a resurgent core intrusion and a ring intrusion with associated lava flows; and rhyolite (mostly lava flows but including some tuff) that fills the caldera moat. Stratigraphic, structural, and geochronologic data indicate that the porphyry was emplaced soon after the Rhyolite Canyon Tuff was erupted and that the evolution of the caldera, including deposition of the moat deposits, was completed in less than 1 million years. The part of the caldera exposed in the Fife Peak quadrangle is surrounded by, and was partly emplaced into, slightly older Tertiary volcanic rocks. Outflow tuff from the Turkey Creek caldera was deposited on a surface composed **Figure 1.** Location of the Fife Peak quadrangle and important geographic and geologic features in the Chiricahua Mountains area, Cochise County, Arizona. - A, Quadrangle location, roads, and important geographic features. - B, U.S. Geological Survey quadrangle names in the area and existing geological maps (cited in parentheses). - C (on facing page), Generalized geology (adapted from Marjaniemi, 1969). of rhyolite lavas of the Oligocene Faraway Ranch Formation, which form a coalescing dome field, and intermediate to mafic lava flows. The topographic margin of the caldera, where exposed, is composed of these same volcanic rocks. These older volcanic rocks are altered (silicified) and weakly mineralized along the northern edge of the quadrangle. Amethystine quartz veins cut these older volcanic rocks in several places within the region of altered rocks. The northern sector of the caldera margin thus appears to have been the locus for weak hydrothermal alteration that accompanied the waning stages of caldera magmatism. The principal structural features in the quadrangle all result from evolution of the Turkey Creek caldera. These include inferred ring fracture faults, which are covered by rhyolitic moat deposits, and high-angle normal faults caused by central resurgent magmatism. | 109° | 30' | 109 | 0°15′ | | |--------|---|---|---------------------------------|---------| | | Bowie
Mountain
South
(Drewes, 1981) | Cochise
Head | Blue
Mountain | | | 32°00′ | | (Drawes, | 1982) | 4 | | | Fife
Peak
(Pallister
and du Bray,
in press) | Rustler
Park
(Pallister
and others,
in press) | Portal | ARIZONA | | | Stanford
Canyon | Chiricahua
Peak | Portal
Peak
(Bryan, 1988) | | | 31°45′ | | | | 1 | | | Bruno
Peak | Swede
Peak | Apache | | | | | rooks, 1988) | | 1 | | | В | | | | #### EXPLANATION FOR GEOLOGIC MAP ON FACING PAGE | | Quaternary surficial deposits | |------------|---| | | OLIGOCENE ROCKS ASSOCIATED WITH THE
TURKEY CREEK CALDERA | | | Moat deposits—Mainly rhyolite lavas and pyroclastic rocks | | Mildelle . | Resurgent intrusion, ring dike, and extrusive equivalents—
Dacite and monzonite porphyry | | 法治 | Rhyolite Canyon Tuff | | RO | CKS THAT PRE-DATE THE TURKEY CREEK CALDERA | | | Volcanic rocks—Mainly Oligocene rhyolite and dacite | | | Basement rocks-Mainly Mesozoic and Paleozoic sedimentary | Contact Structural margin of Turkey Creek caldera Fault—Dashed where approximately located; dotted where concealed rocks: includes some Precambrian granite -··- Streams #### **ANALYTIC DATA** More than 115 rock samples were collected during geologic mapping of the Fife Peak quadrangle. Trace-element abundances were determined in most of these samples by energy-dispersive spectroscopy. Major-oxide abundances were determined for 81 samples, and instrumental neutron Fife Peak Quadrangle, Arizona, Geologic Sample Catalog activation analyses were obtained for 46 samples. Miscellaneous wet chemical determinations (CO₂, FeO, F, and Cl) were also made for a small number of samples. Abundances of Be, Cr, Ni, Pb, Sn, and Ag were determined in two samples. Our sample collecting was
designed to provide areal representation of the igneous rocks exposed in the quadrangle. By collecting and analyzing many samples from each map unit we have established the limits of chemical variability of these units. This procedure is especially important in sampling ash-flow tuffs, many of which are derived from chemically zoned magma chambers (Hildreth, 1981). Chemical data also facilitated lithologic and stratigraphic distinctions that in several instances could not be made in the field through examination of hand samples. All of the geochemical abundances presented here were determined in analytical laboratories of the U.S. Geological Survey in Denver, Colo. Major oxide analyses (table 2) were performed (analysts, J.E. Taggart, A.J. Bartel, and D.F. Siems) using X-ray fluorescence techniques (Taggart and others, 1987) except FeO, CO₂, F, and Cl (table 5), which were determined (analysts, E.L. Brandt and J.D. Sharkey) by wet chemistry (Jackson and others, 1987). Fe2+:total iron as Fe2+ ratios were adjusted to 0.8 and major oxide abundances recalculated to 100 percent, anhydrous basis. Abundances of selected trace elements (table 3) were determined (analysts, E.A. du Bray and D.B. Yager) by energydispersive X-ray fluorescence spectroscopy (Elsass and du Bray, 1982) using ¹⁰⁹Cd and ²⁴¹Am radio-isotope excitation sources; the accuracy of this type of data is discussed by Sawyer and Sargent (1989). Abundances of selected trace elements presented in table 4 were determined (analysts, J.R. Budahn, R.J. Knight, and D.M. McKown) by instrumental neutron activation analysis (Baedecker and McKown, 1987). Abundances of additional trace elements (table 6) were determined (analysts, C.J. Skeen and W. Doughten) by a combination of spectroscopic and wet chemical methods. #### REFERENCES CITED - Baedecker, P.A, and McKown, D.M., 1987, Instrumental neutron activation analysis of geochemical samples, in Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. H1-H14. - Bryan, C.R., 1988, Geology and geochemistry of mid-Tertiary volcanic rocks in the eastern Chiricahua Mountains, southeastem Arizona: Albuquerque, New Mexico, University of New Mexico, M.S. thesis, 137 p. - Drewes, Harald, 1981, Geologic map and sections of the Bowie Mountain South quadrangle, Cochise County, Arizona: U.S. - Geological Survey Miscellaneous Investigations Series Map I–1363, scale 1:24,000. - ______1982, Geologic map of the Cochise Head quadrangle and adjacent areas, southeastern Arizona: U.S. Geological Survey Miscellaneous Investigations Series Map I–1312, scale 1:24,000. - Drewes, Harald, and Brooks, W.E., 1988, Geologic map and cross sections of the Pedregosa Mountains, Cochise County, Arizona: U.S. Geological Survey Miscellaneous Investigations Series Map I–1827, scale 1:48,000. - du Bray, E.A., and Pallister, J.S., 1991, An ash-flow caldera in cross section—Ongoing field and geochemical studies of the Turkey Creek caldera, Chiricahua Mountains, southeast Arizona: Journal of Geophysical Research, B., v. 96, p. 13,435–13,457. - Elsass, Francoise, and du Bray, E.A., 1982, Energy-dispersive X-ray fluorescence spectrometry with the Kevex 7000 system: Saudi Arabian Deputy Ministry Mineral Resources Open-File Report USGS-OF-02-52, 53 p. - Hildreth, Wes, 1981, Gradients in silicic magma chambers: Implications for lithospheric magmatism: Journal of Geophysical Research, v. 86, p. 10153–10192. - Jackson, L.L., Brown, F.W, and Neil, S.T., 1987, Major and minor elements requiring individual determination, classical whole rock analysis, and rapid rock analysis, in Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. G1–G23. - Marjaniemi, D.K., 1969, Geologic history of an ash-flow sequence and its source area in the Basin and Range province of southeastern Arizona: Tucson, Ariz., University of Arizona Ph.D. dissertation, 176 p. - Pallister, J.S., and du Bray, E.A., 1989, Field guide to volcanic and plutonic features of the Turkey Creek caldera, Chiricahua Mountains southeast Arizona, in Chapin, C.E., and Zidek, Jiri, eds., Field excursions to volcanic terranes in the western United States, volume 1—Southern Rocky Mountain region: New Mexico Bureau of Mines and Mineral Resources Memoir 46, p. 138–152. - in press, Geologic map of the Fife Peak quadrangle, southeast Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1708, scale 1:24,000. - Pallister, J.S., du Bray, E.A., and Latta, J.S., IV, in press, Geologic map of the Rustler Park quadrangle, southeast Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1696, scale 1:24,000. - Pallister, J.S., du Bray, E.A., Rosenbaum, J.G., Snee, L.W., and Yager, D.B., 1990, Calderas in 3–D, Chiricahua Mountains, southeast Arizona, in Gehrels, G.E., and Spencer, J.E., eds., Geologic excursions through the Sonoran Desert region, Arizona and Sonora: Arizona Geological Survey Special Paper 7, p. 31–40. - Sawyer, D.A., and Sargent, K.A., 1989, Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field: Journal of Geophysical Research, v. 94, p. 6021–6040. - Taggart, J.E., Jr., Lindsay, J.R., Scott, B.A., Vivit, D.V., Bartel, A.J., and Stewart, K.C., 1987, Analysis of geologic materials by X-ray fluorescence spectrometry, in Baedecker, P.A., ed., Methods for geochemical analysis: U.S. Geological Survey Bulletin 1770, p. E1–E19. **Table 1.** Status and treatment of samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [X, data or sample type available, blank if unavailable. WRM, whole-rock major oxide analysis (table 2); NA, neutron activation analysis (table 4); KEV, energy-dispersive trace-element analysis (table 3); TS, thin section and hand sample available; PTS, polished thin section and hand sample available; REF, reference hand sample available. Map unit symbols (in parentheses) match those shown on Fife Peak geologic map (Pallister and du Bray, in press)] | Sample
number | WRM | NA | KEV | Other
data* | TS | PTS | REF | COMMENTS | |---|-----|----|--|----------------|----|-------|--------|----------------------------| | | | | | | | Aphyr | ic rhy | rolite lava, unit 3 (Tmr3) | | 201612 | | | х | | | | | POSSIBLY RHEOMORPHIC TUFF. | | 201782 | | | x | | | | | POSSIBLI KNEOMOKPHIC TOFF. | | 201891 | х | | x | | | | | | | 201892 | x | X | x | | | | | | | 201899 | x | x | x | | | | | | | 201990 | ^ | ^ | x | | | | | | | 201999 | | | ^ | | X | | | | | 202000 | | | | | X | | | | | 202001 | | | | | x | | | | | ··· | | | | | | A-1 | | | | | | | | | | Apnyr | ic rny | volite tuff, unit 3 (Tmt3) | | 201596 | x | X | X | | x | | | VITROPHYRE. | | 201596B | | | | | X | | | DEVITRIFIED 201596. | | 201890 | X | | X | | X | | | | | 20189 3 | X | X | X | | | | | | | 201898 | X | X | X | | | | | | | 201989 | | | X | | | | | | | 201998 | | | | | X | | | | | | | | | | | Aphyr | ic rhy | rolite lava, unit 2 (Tmr2) | | | | | | | | | | | | 201610 | | | х | | | | | | | | | | X
X | | | | | GLASS. | | 201611 | | | X | | | | | GLASS. | | 201611
201889 | x | | X
X | | | | | GLASS. | | 201611
201889
201897 | x | | X | | x | | | | | 201611
201889
201897
201909 | X | | X
X
X | | x | | | GLASS. | | 201611
201889
201897
201909
201987 | x | | X
X
X | | x | | | | | 201611
201889
201897
201909
201987
201988 | X | | X
X
X | | x | | | | | 201611
201889
201897
201909
201987
201988
201991 | x | | X
X
X | | x | | | | | 201611
201889
201897
201909
201987
201988
201991
201992 | × | | X
X
X
X | | x | | | | | 201611
201889
201897
201909
201987
201988
201991
201992
201993 | x | | X
X
X
X
X | | x | | | | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994 | x | | X
X
X
X
X
X | 4 | x | X | | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995 | x | x | X
X
X
X
X
X | 4 | | x | | | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515 | | x | X
X
X
X
X
X
X | 4 | x | x | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515 | x | x | X
X
X
X
X
X | 4 | | x | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562 | x | x | X
X
X
X
X
X
X
X | 4 | | X | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P563 | x | x | X
X
X
X
X
X
X
X
X | 4 | | x | X | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P563 | x | x | x
x
x
x
x
x
x
x
x
x | 4 | | X | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P566
P566 | x | x | x
x
x
x
x
x
x
x
x
x
x
x | 4 | | x | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P566
P5667
P568 | x | x | x
x
x
x
x
x
x
x
x
x
x | 4 | | x | x | GLASS. | |
201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P563
P5667
P568
P568 | x | x | x | 4 | | x | x | GLASS. | | 201611
201889
201897
201909
201987
201988
201991
201992
201993
201994
201995
P043
P515
P561
P562
P566
P5667
P568 | x | x | x
x
x
x
x
x
x
x
x
x
x | 4 | | x | x | GLASS. | Table 1. Status and treatment of samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | Sample
number | WRM | NA | KEV | Other
data* | TS | PTS | REF | COMMENTS | |------------------|--------|----|--------|----------------|-------|---------|---------|---| | | | | | | | Aphyr | ic rhyd | lite tuff, unit 2 (Tmt2) | | 201616 | | | x | | x | | | | | 201895
201900 | X | | X | | x | | | | | 201905 | | | x | | ^ | | | | | 201906 | X | X | X | | | | | | | 201913 | X | | X | | v | | | | | P564
P565 | | | X | | X | | X | | | | | | | | | Aphyr | ic rhyc | olite tuff, unit 1 (Tmt1) | | P227B
P503 | x | х | x | | | х | | BASAL VITROPHYRE. | | | | | | | | В | iotite | rhyolite lava (Tmrb) | | 201593 | | | | | | х | | GLASS. | | 201594 | X | X | X | 1,2 | | x | | GLASS. | | 201595 | X | X | X | 1,2 | X | | | DEVITRIFIED 201594. | | 201613 | | | X | | | X | | | | 201614
201615 | v | v | X
X | 1 2 | | X | | LAVA CLACC | | 201779 | X
X | X | x | 1,2 | х | X | | LAVA GLASS. ALTERED, SECONDARY SIO ₂ . | | 201894 | | | X | | •• | X | | | | 201902 | | | X | | X | | | | | 201904 | | | X | | X | | | | | 201908
201914 | Х | | X | | X | | | | | P497 | | | •• | | x | | | UNWELDED, REWORKED AIRFALL TUFF. | | P512 | | | | | | X | | | | P513 | | | | ···· | X | | | GLASS. | | | | | | | | | Sedim | entary rocks (Tms) | | P496 | | | | | x | | | TUFFACEOUS SANDSTONE AND BRECCIA. | | | | | | Dacit | e and | d monzo | nite po | orphyry, resurgent intrusion (Tdpi) | | 201780
201787 | | | X
X | | | | | | | 201907B | | | ^ | | X | | | UNEXPECTED OCCURRENCE OF PORPHYRY. | | | | | | R | lhyol | ite Car | nyon Tu | ff, aplite and rhyolite (Trca) | | 201781 | х | | х | | х | | | | | 201785 | x | | x | | â | | | FINE-GRAINED INTRUSIVE AT TDPI/TRCI CONTACT. | | P367 | X | | X | | | X | | WITH QUARTZ; PHANERITIC; SILL-LIKE. | | P368 | X | | X | | | X | | Do. | **Table 1.** Status and treatment of samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | Sample
number | WRM | NA | KEV | Other
data* | | PTS | REF | COMMENTS | |---|------------------|-------|--|----------------|-----------------------|---------|---------|--| | | | | | Rhyol | ite Ca | anyon 1 | Tuff, a | aplite and rhyolite (Trca)Continued | | 369A | | | | | | | x | PARTIAL MELTING AT TDPI/TRCI CONTACT. | | 2369B | | | | | | | Х | Do. | | 9369C
9473 | | | | | X | | X | Do.
SILL IN TRCI NEAR TDPI/TRCI CONTACT AT MADRONO SPRING. | | | | | | | Rhyol | ite Ca | nyon T | uff, intracaldera facies (Trci) | | 201591
201592 | | | X
X | | X | | | TOP OF LOWER TRC!? | | 201786 | | | LOS | ST | ^ | | | TOP OF LOWER TREES | | 01907 | | | X | - • | | Х | | BLACK GLASS, APHYRIC. | | 01907C | | | | | X | | | ODD TEXTURE. | | 01910 | X | | X | | X | | | CLOTTY, ODDLY PORPHYRITIC TRCI (MAFIC FIAMME). | | 201911 | X | | X | | X | | | | | 01912 | X | | Х | | X | | | NEAR TOP OF UPPER PART OF TRCI. | | 221
360 | v | | v | | X | | | RECRYSTALLIZED TRCI. | | | X | v | X | 7 5 | X | | | | | 474
509a | X | X | Х | 3,5 | X | | X | CEDIMENTARY LAC PRECCIA | | 511A | | | v | | X | | | SEDIMENTARY LAG BRECCIA. | | 511B | | | X | | X | | X | DARK, PORPHYRITIC MAGMA BLEB. REFERENCE SAMPLE IS A SLAB; LITHIC-RICH TRCI. | Rh | yolite | Canyo | n Tuff | , lowe | er or middle member ouflow facies (Trco) | | 201883 | | | Rh
X | yolite | Canyo | n Tuff | , lowe | er or middle member ouflow facies (Trco) ANOMALOUS TRACE-ELEMENT COMPOSITION. | | | | | | yolite | Canyo | n Tuff | f, lowe | | | 01884 | | | x | yolite | Canyo | n Tuff | f, lowe | ANOMALOUS TRACE-ELEMENT COMPOSITION. | | 01884
01885
01888 | | | X
X
X | yolite | Canyo | n Tuff | f, lowe | ANOMALOUS TRACE-ELEMENT COMPOSITION. | | 01884
01885
01888
01915 | | | X
X
X
X | yolite | Canyo | n Tuff | f, lowe | ANOMALOUS TRACE-ELEMENT COMPOSITION. | | 201884
201885
201888
201915 | | | X
X
X | yolite | Canyo | on Tuff | f, lowe | ANOMALOUS TRACE-ELEMENT COMPOSITION. | | 201883
201884
201885
201888
201915
2494 | F | arawa | X
X
X
X
X | | | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. | | 201884
201885
201888
201915
2494 | ·· | arawa | X
X
X
X
X | | | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. | | 201884
201885
201888
201915
494
 | F. | arawa | X
X
X
X
X
X | | matio | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. | | 01884
01885
01888
01915
494
<u>fv1:</u>
01857
01896 | ·· | arawa | X
X
X
X
X
X | | matio
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. | | 01884
01885
01888
01915
494
<u>fv1:</u>
01857
01896
506 | ·· | arawa | X
X
X
X
X
X | | matio | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. | | 01884
01885
01888
01915
494
fv1:
01857
01896
506
507 | x | arawa | X
X
X
X
X
X
A
A
X
X | | matio | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. | | 01884
01885
01888
01915
494
 | x
x | arawa | X
X
X
X
X
X
X
X
X
X | | matio | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) | | 01884
01885
01888
01915
494
 | x
x
x | arawa | X
X
X
X
X
X
X
X
X
X | | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
601
606
607
607
607
607
607 | x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
6501
01857
01857
01896
506
507
67
672:
01783
01784
479 | x
x
x | arawa | X
X
X
X
X
X
X
X
X
X | | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494 | x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 601884
601885
601888
601915
494
601857
601857
601857
601857
601857
601783
601783
601784
601784
601784 | x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
<u>fv1:</u>
01857
01857
01896
506
507
<u>fv2:</u>
01783
479
499 | x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
<u>fv1:</u>
01857
01896
506
507
<u>fv2:</u>
01783
01784
479
499
<u>fv3:</u>
01882 | x
x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
x
x
x
x | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
 | x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
X
X
X | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
01857
01896
606
607
606
607
672:
01783
01784
679
199
673:
01882
01917 | x
x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
x
x
x
x | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) BRECCIATED DACITE AT TDPI/TRCI CONTACT. | | 01884
01885
01888
01915
494
01857
01857
01856
006
007
5 <u>v2:</u>
01784
479
99
5 <u>v3:</u>
01882 | x
x
x
x | | X
X
X
X
X
X
X
X
X
X | nch For | x
x
x
x
x | | | ANOMALOUS TRACE-ELEMENT COMPOSITION. Do. and volcaniclastic rocks, undifferentiated (Tfv) | Table 1. Status and treatment of samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | away | | h For | | | canic | and v | volcaniclastic rocks, undifferentiated (Tfv)Continued | |-------|----------|-------|--------|---|-------|-------|--| | inued | <u>:</u> | x | | | | | | | | | X | | | |
| Х | | | GLASS. | | | | | | X | | | CRYSTAL-RICH, DEVITRIFIED. | | | | | | X | | | GLASS. | | | | | | X | | | | | | | | | | | X | FLOW-BANDED, CRYSTAL-RICH, BIOTITE-FELDSPAR DACITE OF RHYOLITE PORPHYRY. | | | | | | X | | | CRYSTAL RICH, BT-FSPR DACITE. | | | | | | | | | Miscellaneous | | | | х | | x | | | INCLUSION IN DACITE PORPHYRY. MASSIVE HEMATITIC ALERATION OF TFV. | | | | | X
X | | x x | x x | x x | ^{*} Other geochemical data, identified by following codes: Ferrous iron and carbon dioxide analyses (table 5). Fluorine and chlorine analyses (table 5). ^{3.} Miscellaneous trace-element analyses (Be, Cr, Ni, Pb, Sn, and Ag; table 6). 4. 40Ar/³⁹Ar isotope analysis of glass by L.W. Snee (U.S. Geological Survey, unpub. data). 5. Lead and oxygen isotope analyses by Robert Ayuso (U.S. Geological Survey, unpub. data). **Table 2.** Major oxide analyses for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [Data in weight percent. Fe^{2+} /total iron (as FeO) adjusted to 0.8 and abundances normalized to 100 weight percent, anhydrous. Map unit symbols above data columns match those shown on the Fife Peak geologic map (Pallister and du Bray, in press) and are defined in table 1. LOI, loss on ignition; ND, not detected. Analyses by X-ray fluorescence spectroscopy; J.E. Taggart, A.J. Bartel, and D.F. Siems, analysts] | Map unit | | Tmr3 | | | Tmt | 3 | | Tmr2 | | |--|------------|--------|--------|--------|--------|--------|--------|-------------------|--| | Sample No. | 201891 | 201892 | 201899 | 201596 | 201890 | 201893 | 201898 | 201897 | | | SiO ₂
Al ₂ O ₃
Fe ₂ O ₃
FeO | 77.53 | 77.48 | 77.34 | 78.18 | 76.42 | 77.20 | 77.81 | 77.26 | | | Alaba | 12.13 | 12.37 | 12.44 | 11.89 | 12.85 | 12.51 | 11.97 | 12.67 | | | Fe ₂ 0 ₂ | .25 | .23 | .23 | .21 | .24 | .23 | .23 | .23 | | | FeŐ | .25
.92 | .83 | .83 | .75 | .86 | .83 | .81 | .84 | | | Ma0 | .12 | .10 | .11 | . 13 | .12 | .12 | .11 | .23
.84
.11 | | | CaO | .23 | .11 | .10 | .30 | .13 | .31 | .31 | .09 | | | Na ₂ 0 | 3.61 | 3.55 | 3.56 | 3.47 | 3.78 | 3.48 | 3.60 | 3.33 | | | K26 | 5.02 | 5.15 | 5.20 | 4.91 | 5.38 | 5.13 | 4.96 | 5.19 | | | TโO ₂ | .15 | -14 | .15 | .14 | .15 | .15 | .14 | .15 | | | P205 | ND .08 | | | CaO
Na ₂ O
K ₂ O
T1O ₂
P ₂ O ₅
MnO | .03 | .03 | .04 | .02 | .06 | .04 | .05 | .15
.08
.04 | | | LOI | .60 | .45 | .36 | .41 | .44 | 1.01 | .34 | .62 | | | Map unit | Tn | nr2 | | Tmt2 | | Tmt1 | Tmrb | | |---|-------|-------|--------|--------|--------|-------|--------|--------| | Sample No. | P043 | P515 | 201895 | 201906 | 201913 | P503 | 201594 | 201595 | | Si0 ₂ | 77.27 | 77.10 | 77.49 | 77.65 | 77.44 | 76.70 | 73.89 | 74.51 | | Al ₂ 03
Fe ₂ 03
Fe0 | 12.79 | 12.22 | 12.64 | 11.91 | 12.54 | 12.40 | 14.04 | 13.60 | | Fe ₂ O ₂ | .21 | .22 | .23 | .24 | .23 | .25 | .40 | .39 | | FeÖ | .75 | .78 | .84 | .85 | .82 | .91 | 1.43 | 1.39 | | Mg0 | ND | .13 | .15 | .20 | .12 | .18 | .50 | .31 | | CaO | .10 | .40 | .18 | .36 | .07 | .59 | 1.54 | 1.12 | | Na ₂ 0 | 3.51 | 3.37 | 2.96 | 3.51 | 3.40 | 3.62 | 3.82 | 2.60 | | ĸ _ე ნ | 5.16 | 5.56 | 5.30 | 5.07 | 5.19 | 5.13 | 3.95 | 5.81 | | Na ₂ 0
K ₂ 0
T10 ₂ | .15 | .15 | .15 | .15 | .15 | .17 | .29 | .27 | | P205 | ND | ND | ND | ND | ND | ND | .08 | ND | | P ₂ 05
Mno | .05 | .07 | .05 | .06 | .04 | .06 | .05 | ND | | L01 | .40 | 4.46 | .90 | .89 | .47 | 3.21 | 3.94 | .76 | | Map unit | | Tmrb | | | | <u>Trci</u> | | | |---|--------|--------|--------|--------|--------|-------------|-------|-------------| | Sample No. | 201615 | 201779 | 201914 | 201781 | 201785 | P367 | P368 | 201910 | | Si02 | 72.67 | 77.72 | 74.06 | 74.55 | 77.52 | 72.60 | 77.75 | 77.63 | | Al ₂ Óz | 14.66 | 12.04 | 13.51 | 12.75 | 11.94 | 13.56 | 11.85 | 11.69 | | Fe ₂ 0 ₂ | .38 | .35 | .40 | .47 | .31 | .60 | .32 | .3 8 | | Al ₂ 0 ₃
Fe ₂ 0 ₃
Fe0 | 1.38 | 1.25 | 1.43 | 1.68 | 1.13 | 2.17 | 1.14 | 1.38 | | Mg0 | .52 | .58 | .44 | .42 | .16 | .60 | .14 | .36 | | CaO | 1.83 | 1.20 | 1.07 | .85 | .10 | .97 | .08 | .36
.38 | | Na ₂ 0 | 3.33 | 1.92 | 3.46 | 3.59 | 3.51 | 3.70 | 3.30 | 3.24 | | K ₂ δ | 4.86 | 4.57 | 5,28 | 5.19 | 5.14 | 5.11 | 5.24 | 4.74 | | T102 | .25 | .25 | .26 | .31 | .14 | .47 | .14 | .17 | | P205 | .08 | .08 | .08 | .09 | ND | .17 | ND | ND | | Na ₂ 0
K ₂ 0
Ti0 ₂
P ₂ 0 ₅
Mno | .04 | .04 | ND | .09 | .04 | .05 | .03 | ND
.04 | | L0I | 3.42 | 3.06 | .41 | .60 | .51 | 1.10 | .44 | .48 | **Table 2.** Major oxide analyses for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | Map unit | | T | rci | | Tfv | | | | | |--------------------------------|--------|--------|-------|-------|--------|---------------|---------------|--------|--| | Sample No. | 201911 | 201912 | P360 | P474 | 201857 | P507 | 201783 | 201784 | | | Si02 | 76.54 | 78.10 | 76.76 | 76.74 | 60.09 | 69.56 | 61.95 | 63.40 | | | Al263 | 12.52 | 11.72 | 12.15 | 12.20 | 17.20 | 15.07 | 16.82 | 16.93 | | | Fe ₂ 0 ₂ | .40 | .35 | .42 | .37 | 1.25 | .73 | 1.08 | 1.10 | | | Fe ₂ 03
Fe0 | 1.44 | 1.26 | 1.49 | 1.35 | 4.49 | 2.61 | 3.88 | 3.98 | | | Mg0 | .13 | .10 | .14 | .15 | 2.81 | .51 | 2.00 | 2.47 | | | CaO | .19 | .22 | .34 | .16 | 1.47 | 1.31 | 2.68 | 2.82 | | | Na ₂ 0 | 3.39 | 3.12 | 3.55 | 2.80 | 2.59 | 2.27 | 2.83 | 4.05 | | | κ ₂ δ | 5.12 | 4.97 | 4.85 | 6.02 | 8.98 | 7 .3 5 | 7 .7 8 | 4.25 | | | T102 | .17 | .15 | .23 | .18 | .74 | .42 | .63 | .65 | | | | ND | ND | ND | ND | .28 | .14 | .26 | .27 | | | P ₂ 05
Mn0 | .09 | ND | .06 | .03 | .10 | .02 | .09 | .07 | | | L01 | .79 | .85 | .56 | .81 | 2.42 | .87 | 1.56 | 2.48 | | | Map unit | | <u> </u> | | |--------------------|-------|----------|--------| | Sample No. | P479 | 201917 | 201886 | | \$i0 ₂ | 62.95 | 52.88 | 68.15 | | Alaba | 16.74 | 18.44 | 16.04 | | Fe ₂ 02 | 1.19 | 1.83 | .73 | | FeÖ | 4.30 | 6.58 | 2.61 | | Mg0 | 2.73 | 5.15 | .96 | | CaO | 3.49 | 9.65 | 3.04 | | Na ₂ 0 | 3.41 | 2.70 | 3.78 | | κ ₂ δ | 4.13 | 1.62 | 4.02 | | T102 | .71 | .82 | .48 | | P205 | .26 | .18 | .15 | | Mño | .07 | .15 | .04 | | LOI | 2.42 | 1.09 | 1.44 | **Table 3.** Trace-element data for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [Data in parts per million. Map unit symbols above data columns match those shown on the Fife Peak geologic map (Pallister and du Bray, in press) and are defined in table 1. ND, not detected. Energy-dispersive X-ray fluorescence; E.A. du Bray and D.B. Yager, analysts] | | <u> </u> | | | _ | | | _ | | |------------------------|-------------------|-----------|-----------------|---------------|------------------|--------------|---------------------|---------------| | Map unit
Sample No. | 201612 | 201782 | | nr3
201892 | 201899 | 201990 | <u>Тп</u>
201596 | 1t3
201890 | | • | | | | | | | | | | Zn | 7 0 | 54
700 | 73 | 76
707 | 58 | 94 | 68
700 | 62 | | Rb
Sr | 38 9
20 | 389
15 | 375
26 | 393
17 | 383
19 | 416
21 | 380
15 | 409
18 | | Y | 27 | 33 | 20
47 | 28 | 35 | 59 | 69 | 50 | | Zr | 194 | 191 | 191 | 198 | 197 | 207 | 182 | 209 | | Nb | 51 | 48 | 51 | 50 | 54 | 52 | 47 | 56 | | Pb | 33 | 31 | 40 | 47 | 55 | 47 | 38 | 54 | | Th | 63 | 52 | 56 | 61 | 67 | 56 | 57 | 66 | | Ba | 14 | 6 | 14 | 17 | 13 | 6 | 15 | 24 | | La
Ce | 24
54 | 22
71 | 32
81 | 27
74 | 29
61 | 22
93 | 53
99 | 28
94 | | Nd | 19 | 18 | 28 | 18 | 27 | 19 | 46 | 26 | | | | | | | | | | | | Map unit | 204007 | Tmt3 | 201000 | 201/10 | 204/44 | Tmr2 | 204807 | 201987 | | Sample No. | 201893 | 201898 | 201989 | 201610 | 201611 | 201889 | 201897 | | | Zn | 61 | 25 | 82 | 89 | 81 | 76 | 68 | 53 | | Rb | 392 | 376 | 405 | 402 | 437 | 399 | 399 | 392 | | Sr | 18
50 | 17
61 | 22
44 | 15
55 | 29
63 | 14
31 | 42
50 | 14
36 | | Zr | 207 | 195 | 190 | 202 | 193 | 195 | 186 | 198 | | Nb | 52 | 56 | 53 | 5 7 | 49 | 53 | 51 | 50 | | Pb | 35 | 62 | 48 | 62 | 54 | 44 | 58 | 49 | | Th | 70 | 65 | 58 | 61 | 70 | 56 | 68 | 70 | | Ba | 23 | 6 | 26 | _6 | 6 | _6 | 38 | 6 | | La | 45 | 51 | 28 | 24 | 45 | 34 | 50 | 26 | | Ce
Nd | 113
35 | 97
43 | 97
29 | 74
36 | 103
44 | 95
31 | 102
44 | 64
19 | | Map unit | | | | Tmr | 2 | | | | | Sample No. | 201991 | 201993 | P043 | P 5 15 | P561 | P5 62 | P566 | P568 | | Zn | 52 | 65 | 63 | 67 | 75 | 54 | 54 | 64 | | Rb | 356 | 405 | 384 | 377 | 421 | 426 | 399 | 389 | | Sr | 16 | 20 | 15 | 14 | 36 | 19 | 12 | 16 | | Y | 67 | 42 | 41 | 63 | 58 | 35 | 64 | 46 | | Zr | 205 | 194 | 185 | 190 | 186 | 203 | 193 | 198 | | Nb
Pb | 53
53 | 55
50 | 48
47 | 56
34 | 56
50 | 58
55 | 51
48 | 51
42 | | Th | 62 | 56 | 72 | 55 | 59 | 52 | 56 | 61 | | Ba | 30 | 25 | 14 | 6 | 23 | 20 | 6 | 25 | | La | 27 | 39 | 31 | 56 | 37 | 16 | 56 | 25 | | Ce | 93 | 114 | 74 | 98 | 108 | 53 | 104 | 83 | | Nd | 31 | 40 | 33 | 40 | 33 | 8 | 46 | 20 | | Map unit | Tmr2 | | | | Tmt2 | | | | | Sample No. | P570 | 201616 | 201895 | 201900 | 201905 | 201906 | 201913 | P564 | | Zn | 25 | 62 | 91 | 72 | 51 | 25 | 25 | 71 | | Rb
Sr | 385
15 | 392
10 | 413 | 397
37 | 389
15 | 373
30 | 394
14 | 402 | | Y | 15
62 | 19
37 | 22
54 | 34
67 | 15
3 2 | 30
53 | 16
3 6 | 20
37 | | Zr | 198 | 204 | 200 | 201 | 199 | 1 9 0 | 209 | 198 | | Nb | 51 | 57 | 52 | 51 | 51 | 52 | 57 | 51 | | Pb | 46 | 37 | 67 | 48 | 35 | 32 | 47 | 51 | | Th | 50 | 67 | 63 | 70 | 61 | 64 | 46 | 60 | | Ba | 15 | 25 | 16 | 25 | 31 | 61 |
15 | 15 | | La | 42 | 35 | 44 | 51
402 | 22 | 43 | 39
57 | 25 | | Ce
Nd | 100
34 | 82
31 | 102
28 | 102
42 | 62
27 | 87
37 | 53
28 | 81
28 | | 1746 | J4 | J1 | 20 | 46 | ۲1 | 31 | 20 | 20 | Table 3. Trace-element data for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | Map unit | Tmt2 | Tmt1 | | | Т | mrb | | | |---|---|--|---|--|--|---|--|--| | Sample No. | P565 | P503 | 201594 | 201595 | 201613 | 201614 | 201615 | 201779 | | Zn | 231 | 51 | 70 | 25 | 25 | 78 | 25 | 25 | | Rb | 394 | 365 | 293 | 250 | 228 | 236 | 252 | 210 | | Sr | 15 | 37 | 147 | 134 | 223 | 223 | 235 | 131 | | Y | 62 | 58 | 39 | 40 | 32 | 32 | 33 | 47 | | Zr | 199 | 183 | 195 | 170 | 166 | 164 | 161 | 164 | | Nb | 51 | 51 | 19 | 14 | 16 | 14 | 12 | 8 | | Pb | 43 | 54 | 37 | 42 | 15 | 45 | 37 | 35 | | Th | 51 | 57 | 35 | 33 | 39 | 48 | 41 | 36 | | Ba | 22 | 68 | 631 | 630 | 809 | 747 | 809 | 636 | | La | 43 | 48 | 54 | 58 | 52 | 44 | 50 | 54 | | Ce | 99 | 105 | 105 | 122 | 93 | 89 | 93 | 114 | | Nd | 38 | 45 | 54 | 64 | 50 | 54 | 48 | 45 | | | | | | | | | | | | Map unit
Sample No. | 201894 | 201902 | mrb
201904 | 201914 | 201883 | 201884 | 201885 | 201888 | | Zn | 70 | 25 | 56 | 64 | 90 | 95 | 98 | 65 | | Rb | 243 | 321 | 198 | 265 | 406 | 435 | 410 | 453 | | Sr | 240 | 97 | 246 | 131 | 192 | 207 | 15 | 16 | | Y | 31 | 32 | 35 | 47 | 44 | 69 | 34 | 90 | | Zr | 155 | 114 | 184 | 188 | 273 | 298 | 286 | 312 | | Nb | 15 | 11 | 9 | 15 | 50 | 63 | 58 | 66 | | Pb | 49 | 36 | 34 | 15 | 43 | 77 | 35 | 15 | | Th | 51 | 36 | 41 | 42 | 51 | 55 | 53 | 58 | | Ba | 811 | 427 | 823 | 694 | 85 | 58 | 24 | 17 | | La | 57 | 36 | 60 | 70 | 58 | 45 | 32 | 56 | | Ce | 96 | 76 | 107 | 124 | 125 | 137 | 128 | 150 | | Nd | 45 | 28 | 48 | 60 | 49 | 35 | 29 | 52 | | | 7.5 | 20 | 40 | 00 | 4, | 3, | 2, | - | | | | | * | | | | | | | Map unit | | co | | | са | | | ci | | Map unit
Sample No. | 7 r
201915 | P494 | 201781 | 7 r
201785 | ca
P367 | P368 | <u>Tr</u>
201591 | ci
201592 | | Sample No.
Zn | 201915 | P494
25 | 201781
65 | | P367
73 | 63 | 201591
80 | 201592
25 | | Sample No.
Zn | 201915
65
426 | P494 | | 201785 | P 367 | | 201591 | 201592 | | Sample No.
Zn | 201915 | P494
25 | 65 | 201785
25 | P367
73 | 63 | 201591
80 | 201592
25 | | Sample No. Zn Rb Sr | 201915
65
426 | P494
25
378 | 65
342 | 201785
25
367 | P367
73
274 | 63
411 | 201591
80
625 | 201592
25
302 | | Sample No. Zn Rb Sr Y | 65
426
25 | P494
25
378
19 | 65
342
74 | 201785
25
367
26 | P367
73
274
103 | 63
411
21 | 80
625
32 | 201592
25
302
18 | | Zn
Rb
Sr
Y | 65
426
25
50 | P494
25
378
19
64 | 65
342
74
62 | 201785
25
367
26
67
255 | P367
73
274
103
62 | 63
411
21
61 | 80
625
32
75 | 201592
25
302
18
54 | | Zn
Rb
Sr
Y
Zr | 65
426
25
50
293 | 25
378
19
64
285
55 | 65
342
74
62
320
50 | 201785
25
367
26
67
255
53 | 73
274
103
62
370
37 | 63
411
21
61
243
52 | 80
625
32
75
293 | 201592
25
302
18
54
350 | | Zn
Rb
Y
Zr
Nb
Pb | 65
426
25
50
293
64 | 25
378
19
64
285
55 | 65
342
74
62
320
50
44 | 201785
25
367
26
67
255
53
15 | 73
274
103
62
370
37
34 | 63
411
21
61
243
52
15 | 80
625
32
75
293
47
42 | 201592
25
302
18
54
350
42
15 | | Zn Rb Sr Zr Zr Th | 65
426
25
50
293
64
15
56 | 25
378
19
64
285
55
15 | 65
342
74
62
320
50
44 | 25
367
26
67
255
53
15
50 | 73
274
103
62
370
37
34
39 | 63
411
21
61
243
52
15 | 80
625
32
75
293
47
42
45 | 201592
25
302
18
54
350
42
15 | | Zn Rb Sr Zr Zr Nb Pb Th Ba | 65
426
25
50
293
64
15
56
32 | 25
378
19
64
285
55
15
65
21 | 65
342
74
62
320
50
44
39
227 | 25
367
26
67
255
53
15
50
48 | 73
274
103
62
370
37
34
39
372 | 63
411
21
61
243
52
15
52
33 | 80
625
32
75
293
47
42
45
84 | 201592
25
302
18
54
350
42
15
39 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba La | 65
426
25
50
293
64
15
56
32
63 | 25
378
19
64
285
55
15
65
21 | 65
342
74
62
320
50
44
39
227
82 | 25
367
26
67
255
53
15
50
48
64 | 73
274
103
62
370
37
34
39
372
87 | 63
411
21
61
243
52
15
52
33
50 | 80
625
32
75
293
47
42
45
84
76 | 201592
25
302
18
54
350
42
15
39
40
108 | | Sample No.
Zn
Rb | 65
426
25
50
293
64
15
56
32 | 25
378
19
64
285
55
15
65
21 | 65
342
74
62
320
50
44
39
227 | 25
367
26
67
255
53
15
50
48 | 73
274
103
62
370
37
34
39
372 | 63
411
21
61
243
52
15
52
33 | 80
625
32
75
293
47
42
45
84 | 201592
25
302
18
54
350
42
15
39
40 | | Zn
Rb
Sr
Y
Zr
Th
Ba
La
Ce | 65
426
25
50
293
64
15
56
32
63
139 | 25
378
19
64
285
55
15
65
21
66
153 | 65
342
74
62
320
50
44
39
227
82
146 | 25
367
26
67
255
53
15
50
48
64
136
58 | 73
274
103
62
370
37
34
39
372
87
159 | 63
411
21
61
243
52
15
52
33
50 | 80
625
32
75
293
47
42
45
84
76
142 | 201592
25
302
18
54
350
42
15
39
40
108
186
80 | | Sample No. Zn Rb Sr Y Zr Nb Pb Th Ba Ce Nd | 201915
65
426
25
50
293
64
15
56
32
63
139
51 | 25
378
19
64
285
55
15
65
21
66
153 | 65
342
74
62
320
50
44
39
227
82
146
65 | 25
367
26
67
255
53
15
50
48
64
136 | 73
274
103
62
370
37
34
39
372
87
159 | 63
411
21
61
243
52
15
52
33
50 | 80
625
32
75
293
47
42
45
84
76
142
66 | 201592
25
302
18
54
350
42
15
39
40
108
186
80 | | Sample No. Zn Rb Sr Y Zr Nb Pb Th Ba Ce Nd Map unit Sample No. | 201915
65
426
25
50
293
64
15
56
32
63
139
51 | P494 25 378 19 64 285 55 15 65 21 66 153 58 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 | P367 73 274 103 62 370 37 34 39 372 87 159 68 | 63
411
21
61
243
52
15
52
33
50
109
44 | 80
625
32
75
293
47
42
45
84
76
142
66 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
Tdpi
201780 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba La Ce Nd Map unit Sample No. Zn Rb | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907 | 25
378
19
64
285
55
15
65
21
66
153
58 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 | P367 73 274 103 62 370 37 34 39 372 87 159 68 | 63
411
21
61
243
52
15
52
33
50
109
44 | 80
625
32
75
293
47
42
45
84
76
142
66 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
Tdpi
201780 | | Sample No. Zn Rb Y Zr Nb Th Ba La Cc Map unit Sample No. Zn Rb Rb Sr | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907 | 25
378
19
64
285
55
15
65
21
66
153
58
201910 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 | 63
411
21
61
243
52
15
52
33
50
109
44 | 201591
80
625
32
75
293
47
42
45
84
76
142
66 |
201592
25
302
18
54
350
42
15
39
40
108
186
80
Tdpi
201780 | | Sample No. Zn Rb Y Zr Nb Pb Th Ba Ce Nd Map unit Sample No. Zn Rb Sr | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907 | 25
378
19
64
285
55
15
65
21
66
153
58
201910 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 | 63
411
21
61
243
52
15
52
33
50
109
44
P474 | 201591
80
625
32
75
293
47
42
45
84
76
142
66
P511A | 201592
25
302
18
54
350
42
15
39
40
108
186
80
Tdpi
201780
98
165
256
45 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba Ce Nd Map unit Sample No. Zn Rb Zr | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
P474 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
Tdpi
201780
98
165
256
45
478 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba La Ce Nd Map unit Sample No. Zn Rb Sr Y | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907
96
562
31
75
353
52 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
F474 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
7
7
80
165
201780
98
165
256
45
478
24 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba La Ce Nd Map unit Sample No. Zn Rb Zr Y Zr | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907
96
562
31
75
353
52
46 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41
35 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 54 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 30 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
F474
F6
420
28
72
335
44
38 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 15 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
7
7
201780
98
165
256
478
24
51 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba La Ce Nd Map unit Sample No. Zn Zr Rb Y Zr Th | 201915 65 426 25 50 293 64 15 56 32 63 139 51 201907 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41
35
43 | 65
342
74
62
320
50
44
39
227
82
146
65 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 54 50 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 30 39 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
P474
F6
420
28
72
335
44
38
45 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 15 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
7
7
201780
98
165
256
478
24
51
28 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba Ce Nd Map unit Sample No. Zn Rb Sr Zr Rb Sr In Ba | 201915 65 426 25 50 293 64 15 56 32 63 139 51 201907 96 562 31 75 353 52 46 41 28 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41
35
43
114 | 65
342
74
62
320
50
44
39
227
82
146
65
201911
72
329
23
67
378
49
15
58
47 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 54 50 30 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 30 39 93 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
P474
P474
76
420
28
72
335
44
38
45
74 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 15 57 34 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
201780
98
165
256
45
478
24
24
51
28
809 | | Sample No. Zn Rb Sr Y Nb Pb Th Ba Ce Nd Map unit Sample No. Zn Rb Sr Y Zr Nb Nb La La La | 201915
65
426
25
50
293
64
15
56
32
63
139
51
201907
96
562
31
75
353
52
46
41
28
99 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41
35
43
114
81 | 65
342
74
62
320
50
44
39
227
82
146
65
201911
72
329
23
67
378
49
15
58
47
121 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 54 50 30 38 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 30 39 93 101 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
P474
P474
76 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 15 57 34 78 | 201592
25
302
18
54
350
42
15
39
40
108
186
80
201780
98
165
256
45
478
24
51
28
809
82 | | Sample No. Zn Rb Sr Y Zr Nb Pb Th Ba La Ce Nd | 201915 65 426 25 50 293 64 15 56 32 63 139 51 201907 96 562 31 75 353 52 46 41 28 | 25
378
19
64
285
55
15
65
21
66
153
58
201910
83
296
54
66
283
41
35
43
114 | 65
342
74
62
320
50
44
39
227
82
146
65
201911
72
329
23
67
378
49
15
58
47 | 201785 25 367 26 67 255 53 15 50 48 64 136 58 Trei 201912 ND 321 29 33 305 45 54 50 30 | P367 73 274 103 62 370 37 34 39 372 87 159 68 P360 89 288 39 65 351 47 30 39 93 | 63
411
21
61
243
52
15
52
33
50
109
44
P474
P474
P474
76
420
28
72
335
44
38
45
74 | 201591 80 625 32 75 293 47 42 45 84 76 142 66 P511A 73 286 22 56 310 55 15 57 34 | 201592 25 302 18 54 350 42 15 39 40 108 186 80 Tdpi 201780 98 165 256 478 24 51 28 809 | **Table 3.** Trace-element data for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona—Continued | Map unit | nit <u>Tdpi</u> | | | | Tfv | | | | |------------|-----------------|--------|--------|------|------|--------|--------|------| | Sample No. | 201787 | 201857 | 201896 | P506 | P507 | 201783 | 201784 | P479 | | Zn | 25 | 71 | 86 | 78 | 25 | 139 | 96 | 101 | | Rb | 293 | 516 | 696 | 489 | 426 | 472 | 211 | 183 | | Sr | 163 | 336 | 189 | 271 | 243 | 604 | 535 | 553 | | γ | 51 | 36 | 41 | 36 | 33 | 33 | 29 | 24 | | Zr | 486 | 194 | 160 | 137 | 142 | 190 | 168 | 174 | | Nb | 30 | 3 | 3 | 3 | 9 | 7 | 7 | 7 | | Pb | 38 | 42 | 46 | 39 | 36 | 37 | 47 | 36 | | Th | 35 | 9 | 32 | 28 | 32 | 9 | 9 | 7 | | Ba | 592 | 809 | 668 | 699 | 793 | 801 | 738 | 926 | | La | 102 | 34 | 34 | 37 | 38 | 38 | 40 | 39 | | Ce | 185 | 69 | 72 | 71 | 65 | 70 | 76 | 71 | | Nd | 78 | 30 | 43 | 37 | 48 | 34 | 38 | 28 | | Map unit | | | Miscell | Miscellaneous | | | | |------------|------|--------|---------|---------------|--------|--------|------| | Sample No. | P499 | 201882 | 201917 | 201886 | 201916 | 201609 | P498 | | Zn | 92 | 109 | 126 | 71 | 63 | 75 | 96 | | Rb | 121 | 53 | 46 | 198 | 194 | 225 | 18 | | Sr | 495 | 580 | 557 | 396 | 349 | 328 | 68 | | Υ | 32 | 30 | 38 | 29 | 25 | 24 | 25 | | Zr | 217 | 141 | 137 | 181 | 179 | 241 | 296 | | Nb | 13 | 8 | 8 | 15 | 12 | 15 | 15 | | Pb | 53 | 41 | 49 | 41 | 37 | 15 | 55 | | Th | 9 | ND | 21 | 43 | 35 | 30 | 29 | | Ba | 676 | 464 | 470 | 796 | 801 | 642 | 13 | | La | 36 | 24 | 27 | 45 | 44 | 48 | ND | | Ce | 79 | 54 | 58 | 86 | 87 | 83 | 14 | | Nd | 50 | 30 | 30 | 44 | 38 | 43 | ND | **Table 4.** Instrumental neutron activation data for selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [Data in parts per million. Map unit symbols above data columns match those shown on the Fife Peak geologic map (Pallister and du Bray, in press) and are defined in table 1. ND, not detected. J.R. Budahn, R.J. Knight, and D.M. McKown, analysts] | Map unit | Tn | nr3 | | Tmt3 | | Tmr2 | _Tmt2 | _ Tmt 1 | |------------|--------|--------|-------------|--------|--------|------|--------------|--------------| | Sample No. | 201892 | 201899 | 201596 | 201893 | 201898 | P043 | 201906 | P503 | | Ba | 19 | 43.6 | 30 | 47.4 | 40.5 | 37.7 | 73.8 | 78.4 | | Sr | ND | ND | ND | ND | ND | 9.20 | ND | 35.5 | | Co | .227 | .219 | .165 | .207 | .203 | .241 | .522 | .558 | | Ni | 2.4 | 2.4 | 1.80 | 3.4 | 3.6 | 5.60 | ND | 3.4 | | Cr | 9.82 | 7.99 | ND | 6.74 | 8.22 | ND | 9.10 | 3.9 | | Cs
| 6.30 | 7.90 | 6.73 | 8.17 | 8.43 | 6.90 | 11.7 | 15.8 | | Hf | 8.05 | 8.35 | 7.56 | 7.97 | 8.24 | 9.01 | 8.05 | 7.75 | | Rb | 384 | 391 | 363 | 376 | 376 | 399 | 382 | 379 | | Sb | .162 | . 191 | .222 | .220 | .196 | .206 | .426 | .344 | | Ta | 4.43 | 4.65 | 4.21 | 4.40 | 4.49 | 4.48 | 4.36 | 4.18 | | Th | 45.3 | 44.4 | 41.3 | 43.1 | 43.2 | 50.9 | 44.1 | 41.7 | | U | 6.73 | 9.49 | 9.78 | 8.97 | 8.38 | 10.7 | 10.1 | 11.7 | | Zn | 82.9 | 45.7 | 30.9 | 52.7 | 49.6 | 47.6 | 54.1 | 65. 8 | | Zr | 182 | 186 | 198 | 194 | 198 | 194 | 197 | 201 | | Sc | 2.04 | 2.03 | 2.01 | 2.04 | 2.04 | 2.20 | 2.14 | 2.26 | | La | 24.3 | 25.6 | 50.2 | 39.4 | 42.1 | 28.7 | 38.8 | 45.2 | | Ce | 66.7 | 46.9 | 86.4 | 103 | 92.2 | 72.9 | 79. 9 | 98.1 | | Nd | 13.6 | 17.9 | 39.8 | 32.3 | 32.7 | 18.3 | 28.5 | 34.2 | | Sm | 2.81 | 3.87 | 7.52 | 6.59 | 6.50 | 4.32 | 6.05 | 7.21 | | Eu | . 164 | .189 | .198 | .194 | .199 | .209 | .234 | .277 | | Gd | 3.17 | 3.57 | 7.08 | 6.86 | 7.26 | ND | 6.61 | 7.64 | | Tb | .520 | .676 | 1.24 | 1.08 | 1.14 | .722 | 1.03 | 1.19 | | Tm | .597 | .707 | 1.09 | 1.03 | 1.08 | ND | .998 | 1.01 | | Yb | 4.36 | 4.69 | 7.07 | 6.59 | 7.42 | 5.24 | 6.83 | 7.52 | | Lu | .679 | .709 | .998 | .967 | 1.10 | .786 | 1.02 | 1.11 | | Map unit | | Tmrb | | Trci | Tfv2 | |------------|--------|--------|--------|------|------| | Sample No. | 201594 | 201595 | 201615 | P474 | P479 | | Ba | 605 | 664 | 766 | 64.5 | 909 | | Sr | 132 | 120 | 227 | ND | 584 | | Co | 2.03 | 2.23 | 2.72 | .521 | 15.8 | | Ni | 5.60 | 8.00 | 14.0 | ND | 13.0 | | Cr | 1.25 | 2.20 | 3.79 | 2.30 | 17.3 | | Cs | 6.05 | 1.59 | 4.82 | 7.16 | 3.03 | | Hf | 5.64 | 5.85 | 5.01 | 11.8 | 5.30 | | Rb | 285 | 265 | 256 | 419 | 178 | | Sb | .098 | .113 | .105 | 2.79 | 9.48 | | Ta | 1.49 | 1.52 | 1.25 | 3.91 | .863 | | Th | 27.6 | 28.8 | 24.3 | 42.2 | 11.3 | | U | 3.53 | 4.04 | 3.72 | 8.61 | 2.62 | | Zn | 41.8 | 27.3 | 39.6 | 75.2 | 63.6 | | Zr | 208 | 211 | 187 | 387 | 195 | | Sc | 3.76 | 4.05 | 3.37 | 2.85 | 10.7 | | La | 55.4 | 57.3 | 41.1 | 94.6 | 34.1 | | Ce | 118 | 132 | 87.9 | 194 | 73.4 | | Nd | 48.1 | 52.2 | 32.0 | 79.8 | 33.5 | | Sm | 8.40 | 9.70 | 5.89 | 14.6 | 6.37 | | Eu | 1.00 | 1.08 | .877 | .252 | 1.38 | | Gd | 7.34 | 8.03 | 5.30 | 13.2 | 5.47 | | Tb | 1.11 | 1.18 | .769 | 1.98 | .743 | | Tm | .642 | .616 | .453 | 1.23 | .379 | | Yb | 3.87 | 3.82 | 2.74 | 7.74 | 2.44 | | Lu | .551 | .542 | .386 | 1.12 | .372 | **Table 5.** Abundances of FeO, CO₂, F, and Cl in selected samples of biotite rhyolite lava (Tmrb) from the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [Data in weight percent. ND, not detected. Wet chemical analyses; E.L. Brandt and J.D. Sharkey, analysts] | Sample No. | 201594 | 201595 | 201615 | |-----------------|--------|--------|--------| | Fe0 | 0.50 | 0.15 | 0.34 | | co ₂ | .02 | .02 | ND | | F | .02 | .01 | .01 | | Cl | .07 | ND | .06 | **Table 6.** Abundances of Be, Cr, Ni, Pb, Sn, and Ag in selected samples collected in the Fife Peak quadrangle, Chiricahua Mountains, Cochise County, Arizona [Data in parts per million. ND, not detected. Map unit symbols match those shown on the Fife Peak geologic map (Pallister and du Bray, in press) and are defined in table 1. Spectroscopic and wet chemical determinations by C.J. Skeen and M.W. Doughten] | Map unit | Trci | <u>Ifv</u> | |------------|------|------------| | Sample No. | P474 | P479 | | e | 6.5 | 1.7 | | r | 9.1 | 11 | | li | ND | 12 | | b | 10 | 11 | | Sn | 2.4 | ND | | Ag | .06 | .02 |